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A weighting scheme for difference Fourier synthesis
in fibre diffraction that yields a minimum mean-
square-error estimate for the missing electron
density is described. Simulations show the
advantages of using the weighting scheme, and other
applications in fibre diffraction are discussed.

1. Introduction

Difference Fourier synthesis is an important
technique in small molecule and protein
crystallography, where it is used to locate missing
components (e.g. counterions, or solvent or other
bound molecules) or to correct errors (such as in
side-chain positions), in crystal structures. Since
difference Fourier synthesis involves using a
partially determined structure to phase the diffraction
data, it is also closely related to molecular
replacement  methods. For single crystal
crystallography, difference Fourier methods are quite
well established. The most straightforward approach
is to synthesise a map of the difference electron
density by inverse Fourier transforming the
difference between the observed (measured)

amplitudes |F}{l and the calculated amplitudes (i.e.

those calculated |Fyfl from the known part of the
structure, or from a model structure), phased by the
known part, i.e. Ap(x) = FH{IFZHFS)exp(ioy)},
where F{-} denotes the Fourier transform and ¢
denotes the phase of Fy . This difference map can be
improved upon by weighting the |Fyl in accordance
with the reliability of the ¢, and by including the
effects of errors in the partial structure [1,2].
Difference Fourier methods have also found
significant application in fibre diffraction analysis
since the early days for analysis of the symmetry of
nucleic acids [3], through detailed visualization of
solvent and cation interactions in polysaccharide
systems [4] and applications to helical viruses [5].
However, the relatively straightforward approach to

difference synthesis in single crystal crystallography
does not translate exactly to fibre diffraction
analysis, and applications have involved
approximations unless special symmetry was
present. The difficulty arises because one needs to
synthesise a three-dimensional electron density
function but, whereas the model structure provides
the quantities |Fil and ¢, the two-dimensional
diffraction data available from a fibre diffraction
experiment do not generally provide the individual
quantities |FYl. To calculate a fibre diffraction
difference map, one must use the form

Ap(x) = @"{(\Fﬁ"
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where the [F¢| are approximations to the |Fy¢] that
must be estimated from the fibre diffraction data.

Two approaches to this problem have traditionally
been used in fibre diffraction analysis. For a
polycrystalline specimen, the observed intensity of a
diffraction spot [ takes the form
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where the sum is over the reflections h that overlap
in the spot, as a result of either systematic or
accidental overlap. One approach to approximating
IFi¢1is to assume that all the contributing reflections
are of equal amplitude so that
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where N is the number of reflections contributing to
. This 1F?1 is used in equation (1). This is a
parsimonious choice as it uses phase information
from the model (or known part of the structure), but
does not make use of the relative values of the
amplitudes |Ff] from the model in estimating |72l
This is the approach usually taken as it reduces an
overriding concern, that of biasing the result towards
the model. The second approach is to make use of the
structure amplitudes |Fy1 derived from the model to
estimate |F,’| and assume that the observed

amplitudes are distributed in the same ratios, but are
constrained such that they satisfy equation (2), i.e.
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where I° represents the fibre diffraction intensities
that would be observed from the partial structure, i.e.
[*=YIF%. This approach makes use of more
information from the model (i.e. the amplitude ratios
as well as the phases) and is therefore expected to be
more reliable if the model is closer to the full
structure (i.e. ¢y is closer to the phase of the full
structure and |Fyf1 is closer to [F2l). However, if the
model is not close to the full structure, this synthesis
can introduce more bias towards the model structure
than does the first approach described above.
Therefore, one is generally cautious about using this
synthesis unless one is confident that the partial
structure is a good approximation to the full
structure, i.e. the missing part constitutes a relatively
small part of the full structure.

Returning to single crystal crystallography, in 1960
Sim [1] showed that an improved estimate for the
missing structure can be obtained by using
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Ap(X) = G’_l{(vv )exp(iqbﬁ)} (5)

where the weighting function w is given by
w =1 CIFYNFR VNI IFWIFRZ) for the acentric
reflections and w = tanh(IFAFRI/E) for the centric
reflections. 7,,(-) is the modified Bessel function of
the first kind, £ = ¥, //2 and the f; are the scattering
factors of the missing atoms in the unit cell. Since the
missing atoms are generally not known, £ must be
estimated from the data. The Sim weighting function
stems from minimizing the difference (in the least-
squares sense) between the actual and estimated
missing electron density, and is based on Wilson’s
statistics [6] for the distribution of the structure
amplitudes for the missing electron density.
Applying Sim weighting can give a significant
improvement in the accuracy of a difference map.
Further modifications can be made to the synthesis to
take into account errors in the known part of the
structure [2].

The amplitude of a difference map is scaled by
approximately one-half (for the acentric reflections),
so that a map of the full structure based on the
coefficients  CwlFp-lFy Dexp(idy’) gives better
relative peak heights than does one based on

-

wlFllexp(igy?) [7]. Note, however, that for the

centric reflections the coefficients wlFyllexp(igy°)
should be used. Namba and Stubbs [8] have shown
that a (unweighted) synthesis of the full electron
density based on the coefficients

(m'IFh”'I—(m—l)IFh"I)eXp(t'gDh"), where m is the number
of degrees of freedom in the spot to which [F}2
belongs (defined in the next section), gives the

correct relative peak heights in the fibre diffraction
case.

Optimal fibre diffraction difference Fourier
synthesis

We have carried out an analysis [9,10] analogous to
that of Sim for the fibre diffraction case using the
statistics for the fibre diffraction data 12 [11,12]
(analogous to Wilson’s statistics). Significant insight
is obtained by formally posing the problem as a
Bayesian estimation problem [9]. The synthesis that
minimizes the mean-square-error (i.e. the MMSE
estimate) to the actual electron density is derived as
follows. The structure factors corresponding to the
MMSE estimate of the missing electron density are
given by using the posterior mean (F° P(F°|I,F¢)) for
F in equation (1), where P(F°I1,F°) is the posterior
(conditional) probability density for the observed
structure factors given the intensity data and the
structure factors of the partial structure. Bayes
theorem is used to derive the posterior density from
P(I1F°,F°) and a prior density for the structure
factors of the missing part of the structure based on
Wilson’s  statistics, and wusing equation (2).
Evaluating the above expressions then shows that the
MMSE is given by using [9,10]
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in equation (1), where
L (c‘x"ﬁ il /"Z)
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m 1s the number of degrees of freedom in the datum
[? (twice the number of contributing acentric
reflections or the number of contributing centric
reflections), ¢ =1 for centric reflections and 2 for
acentric reflections, and X is defined as in the
previous section. We have devised effective methods




for estimating X from fibre diffraction data [10]. We
note that equation (7) is strictly correct only if the
datum /° contains only reflections of one type (either
centric or acentric). The weighting function is
considerably more complicated for mixed data [10].
Note that equation (6) takes the form of equation (4)
except for the weight, i.e. the amplitudes are divided
in the same proportion as the amplitudes from the
known part, but are weighted down more, the more
the known part deviates from the full structure (i.e.
the more dissimilar are [¢ and [¢). The weights
depend on the number of degrees of freedom of each
datum, and reduce (as they must) to the Sim weights
for m=1,2. The weighting function, w,,()), as a
function of ¥ = c\/([“]")/E, for different numbers of
degrees of freedom is shown in Fig. 1. As expected,
w,, decreases as the derived F hﬁf become less reliable,
i.e. with decreasing y and increasing m. The effects
of errors in the data and in the known part of the
structure can also be included in the analysis [10].

Furthermore, we have also shown that the two
currently used syntheses described above correspond
to maximum a posterior (MAP) estimates, i.e.
estimates that are located at the maxima of certain
posterior densities [9]. The estimate equation (3)
corresponds to is the value of F° that maximizes

P(Fu01 L op°), ie. it uses the intensity data, and the
phases (but not the amplitudes) derived from the
partial structure. The second estimate, equation (4),
utilizes both the amplitude and phase from the partial
structure, and corresponds to the maximum of
P(FIL FyE). The MMSE estimate is generally better
than the MAP estimates since it is based on the mean

Figure 1: The weighting function w,()) as a function of
y=cV(IPI°)/Z, for different values of m.

rather than the mode.
Simulations

The performance of the various difference Fourier
syntheses described above was investigated by
calculating difference maps using simulated fibre
diffraction data for mannan II, the structure of which
is described by Millane and Hendrixson [13]. The
unit cell is orthorhombic and the space group is /222.
Four polymer chains pass through the unit cell with
their axes at (1/4, 1/4), (1/4, 3/4), (3/4, 1/4) and (3/4,
3/4) in the a-b plane. In determining this structure,
conventional difference Fourier synthesis was used
to locate an ordered water molecule in the crystal
structure [13].

Synthetic fibre diffraction data /7 to 2A resolution
were calculated based on the crystal structure
consisting of the polymer and water molecules
(represented by oxygen atoms). The partial structure
was taken to be that consisting of the polymer
molecules only, from which the structure factors Fy°
were calculated. The water molecule accounts for
approximately 10% of the electrons in the unit cell.
There are 71 unique reflections within this resolution
limit, that give 51 fibre diffraction data as a result of
both systematic and accidental overlaps. There are no
mixed data, i.e. all data contain either centric or
acentric reflections. For these simulations, ¥ was
calculated explicitly, as a function of resolution,
using the atomic scattering factors of the missing
atoms. Using these data, difference electron density
maps for the water molecules were calculated using
the three different methods described above.

Contour maps of the true difference electron density
(calculated using the F}Y) are shown in Fig. 2a at the
z=0 level (left) where two water molecules are
located as shown by two strong peaks, and at the
z=1/4 level (right), which 1s between the water
molecules and the difference map is relatively
featureless (below the lowest contour level).
Difference maps calculated based on equations (6)
(MMSE), (4) and (5) are shown in Figs. 2b, ¢ and d,
respectively. Comparison of these maps with the true
map (Fig. 2a) shows that the MMSE map (Fig. 2b) is
superior to the other two maps in terms of a higher
amplitude of the peaks corresponding to the water
molecules, lower amplitudes of spurious peaks, and a
smaller overall noise level. The improvement over
the maps obtained using the conventional fibre



Figure 2: Contour plots of (a) the true difference electron density map, and estimated maps using (b) equation (6), (c) equation
(3), and (d) equation (4), for mannan II. The maps are shown at levels z=0 (left) and z=1/4 (right). Dashed contours denote

negative levels.

diffraction difference syntheses (Figs. 2¢ and d) is
significant and is expected to improve map
interpretability when real data are used and the
missing structure is more complex than in this
example. Note that in this example, the synthesis
using equation (4) (Fig. 2d) is superior to that
obtained using equation (3) (Fig. 2c¢). This is
probably because the fraction of the total structure
that is missing is rather small so that the ratios of the
IFyl within a spot is a good approximation to the

ratios of the [F;°l.
Discussion

A rigorous weighting scheme for difference Fourier
synthesis in fibre diffraction has been derived, and is

a generalisation of Sim’s weighting scheme.
Simulations show the potential for significant
improvements in the interpretability of difference
maps using this scheme. Extensions to include the
effects of errors in the diffraction data and in the
partial structure, as well as the treatment of mixed
(centric and acentric) data, are in progress. The
weighting scheme, as well as traditional unweighted
syntheses in fibre diffraction, can be neatly
categorised in a Bayesian framework.

The analysis described above applies, strictly, to
diffraction data from polycrystalline fibres. However,
a very similar approach should be applicable to
continuous diffraction data from non-crystalline
fibres also. In the latter case, the problem is one of
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estimating the difference electron density from the
continuous diffraction data /,°(R) and the Fourier-
Bessel structures G, (R) of a known partial
structure. The traditional approach is to estimate the
missing electron density as [8]

Gy(R)|-

n

aplr.0,) =7 Gy (RY)expligfy (R))} (®)

where #B{-} denotes the Fourier-Bessel transform,
G, (R)| is an approximation to 1G,,;°(R)l, and ¢, (R)
is the phase of G,,°(R). The diffracted intensity /;(R)
is given by

2
(R)

L(R)=Y,

n

9)

where the sum is over the values of n that satisfy the
helix selection rule. In principle, the number of terms
in the sum is infinite. However, for a particular
molecule and value of R, the G,;(R) are small for n
larger than a fixed value, and the number of terms
contributing to equation (9) is effectively finite [14].
Equation (9) is then of the same form as equation (2).
and currently used methods to approximate 1G,;(R)!
are analogous to those described in section 1, ie.
dividing [°(R) up either equally among the
contributing 1G,;°(R)I, or in the same proportion as
|G, (R)? divides I(R). The G,(R) approximately
follow Wilson’s statistics [11] so that an identical
approach to that described in section 2 leads to the
same weighting scheme for continuous diffraction
data. While this is likely to be effective in practice, a
more rigorous study of the effects of a sharp cutoff in
the order of the Fourier-Bessel terms that contribute
to the right-hand-side of equation (9). and deviations
from Wilson’s statistics for the 1G,,(R)l, would be
worthwhile.

Molecular replacement is becoming an increasingly
important approach in fibre diffraction. This is
particularly the case for large systems where
isomorphous replacement is very demanding, but
where structure determination by ab initio model
building is not feasible. In such cases, the use of a
related structure to phase, and separate the
amplitudes of, the diffraction data, or to provide an
initial model, is attractive. Since the model structure
in molecular replacement can be considered a partial
structure (with errors), molecular replacement can be
considered as a problem of difference Fourier
synthesis. In fact, current applications of molecular

replacement in fibre diffraction (almost exclusively
with continuous diffraction data, e.g. [15]) use the
model structure to phase and separate the structure
factors contributing to the diffraction data from the
unknown structure, in the same way as for traditional
difference Fourier synthesis as described above. The
weighting scheme described here is therefore
expected to be useful in molecular replacement also.
Two considerations will be important. Since the
model structure is not strictly a part of the full
structure, the effects of errors in the partial structure
will be more important. And since one wishes to
synthesise the full unknown structure, the effects of
bias towards the model will be more important.
Applications of the results presented in section 2 to
molecular replacement, and investigation of the
above considerations, would be worthwhile.
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